2985 independent reflections 1706 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.026$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(5-Methyl-2-furyl)-1-(p-tolyl)-2propen-1-one

Huan-Mei Guo,^a Xian-Bing Wang^b and Fang-Fang Jian^{c*}

^aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, ^bDepartment of Equipment, Weifang University, Weifang 261061, People's Republic of China, and ^cMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China

Correspondence e-mail: ffijan2008@163.com

Received 15 August 2008; accepted 11 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.136; data-to-parameter ratio = 19.3.

The title compound, C₁₅H₁₄O₂, was prepared from 4-methylhypnone and 5-methylfurfural by Clasion-Schmidt condensation. All of the bond lengths and bond angles are in normal ranges. The dihedral angle formed by the benzene ring and furan ring is 5.31 (2).

Related literature

For the biological activity of chalcones, see: Hsieh et al. (1998); Anto et al. (1994). For the effectiveness of chalcones against cancer, see: De Vincenzo et al. (2000); Dimmock et al. (1998). For bond-length and angle data, see: Ali et al. (2005); Zhou (2007).

Experimental

Crystal data

$C_{15}H_{14}O_2$	V = 1245.7 (2) Å ³
$M_r = 226.26$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 8.0394 (8) Å	$\mu = 0.08 \text{ mm}^{-1}$
$b = 17.0278 (17) \text{\AA}$	T = 293 (2) K
c = 10.6550 (8) Å	$0.2 \times 0.2 \times 0.2 \text{ mm}$
$\beta = 121.347 \ (6)^{\circ}$	

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	155 parameters
$wR(F^2) = 0.136$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
2985 reflections	$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of Wei Fang University (grant No. 2008Z04).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2615).

References

- Ali, H. M., Puvaneswary, S., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, o1079-o1080.
- Anto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73-80.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305-312.
- Dimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014-1026.
- Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15. 39-46.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhou, L.-Y. (2007). Acta Cryst. E63, 03113.

supplementary materials

Acta Cryst. (2008). E64, o1951 [doi:10.1107/S1600536808029152]

3-(5-Methyl-2-furyl)-1-(p-tolyl)-2-propen-1-one

H.-M. Guo, X.-B. Wang and F.-F. Jian

Comment

Among flavonoids, chalcones have been identified as interesting compounds having multiple biological actions which include antiinflammatory (Hsieh *et al.*,1998) and antioxidant (Anto *et al.*, 1994). Of particular interest, the effectiveness of chalcones against cancer has been investigated (De Vincenzo *et al.*, 2000; Dimmock *et al.*, 1998). As part of our search for new biologically active compounds we synthesized the title compound (I), and describe its structure here.

In the structure of (I) (Fig. 1), all of the bond lengths and bond angles fall in the normal range (Zhou, 2007; Ali *et al.*, 2005). The dihedral angles formed by the benzene ring and furan ring is $5.31 (2)^{\circ}$. There are some weak C—H···O hydrogen bonds in the crystal structure (Table 1).

Experimental

A mixture of the 5-methylfurfural (0.02 mol), and 4-methylhypnone (0.02 mol) and 10% NaOH (10 ml) was stirred in ethanol (30 mL) for 3 h to afford the title compound (yield 85%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.96 Å, and with U_{iso} =1.2–1.5 U_{eq} .

Figures

Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

3-(5-Methyl-2-furyl)-1-(p-tolyl)-2-propen-1-one

F(000) = 480
$D_{\rm x} = 1.206 {\rm Mg m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 1770 reflections
$\theta = 0.4 - 27.5^{\circ}$

supplementary materials

<i>b</i> = 17.0278 (17) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 10.6550 (8) Å	T = 293 K
$\beta = 121.347 \ (6)^{\circ}$	Bar, colourless
$V = 1245.7 (2) \text{ Å}^3$	$0.2 \times 0.2 \times 0.2$ mm
Z = 4	

Data collection

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.136$	$w = 1/[\sigma^2(F_o^2) + (0.0613P)^2 + 0.0738P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{max} < 0.001$
2985 reflections	$\Delta \rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$
155 parameters	$\Delta \rho_{\rm min} = -0.11 \ e \ \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.011 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.32694 (14)	-0.22464 (6)	-0.56944 (10)	0.0574 (3)

O2	0.14482 (19)	-0.01503 (7)	-0.24561 (13)	0.0810 (4)
C1	-0.5507 (3)	-0.33021 (11)	-0.7020 (2)	0.0892 (6)
H1A	-0.6226	-0.3521	-0.7991	0.134*
H1B	-0.6395	-0.3140	-0.6722	0.134*
H1C	-0.4632	-0.3691	-0.6347	0.134*
C2	-0.4379 (2)	-0.26168 (9)	-0.70182 (17)	0.0582 (4)
C3	-0.4181 (2)	-0.22529 (10)	-0.80412 (18)	0.0656 (4)
H3A	-0.4779	-0.2393	-0.9026	0.079*
C4	-0.2899 (3)	-0.16169 (10)	-0.73553 (18)	0.0665 (4)
H4A	-0.2497	-0.1259	-0.7804	0.080*
C5	-0.2364 (2)	-0.16241 (8)	-0.59293 (16)	0.0545 (4)
C6	-0.1121 (2)	-0.11417 (9)	-0.47132 (18)	0.0590 (4)
H6A	-0.0541	-0.0723	-0.4903	0.071*
C7	-0.0686 (2)	-0.12165 (9)	-0.33318 (17)	0.0577 (4)
H7A	-0.1275	-0.1613	-0.3099	0.069*
C8	0.0699 (2)	-0.06898 (9)	-0.21687 (17)	0.0591 (4)
C9	0.1224 (2)	-0.08231 (9)	-0.06208 (16)	0.0558 (4)
C10	0.0379 (2)	-0.13889 (10)	-0.02027 (18)	0.0683 (5)
H10A	-0.0550	-0.1724	-0.0908	0.082*
C11	0.0888 (3)	-0.14648 (11)	0.1236 (2)	0.0761 (5)
H11A	0.0287	-0.1850	0.1483	0.091*
C12	0.2260 (3)	-0.09881 (10)	0.23223 (19)	0.0701 (5)
C13	0.3126 (3)	-0.04334 (11)	0.1911 (2)	0.0802 (5)
H13A	0.4077	-0.0108	0.2624	0.096*
C14	0.2624 (3)	-0.03474 (10)	0.04727 (19)	0.0734 (5)
H14A	0.3235	0.0036	0.0231	0.088*
C15	0.2803 (3)	-0.10657 (13)	0.3896 (2)	0.0940 (6)
H15A	0.2064	-0.1483	0.3979	0.141*
H15B	0.2525	-0.0582	0.4215	0.141*
H15C	0.4168	-0.1181	0.4500	0.141*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0672 (6)	0.0599 (6)	0.0517 (6)	-0.0065 (5)	0.0355 (5)	-0.0031 (5)
O2	0.1026 (9)	0.0684 (7)	0.0750 (8)	-0.0265 (7)	0.0484 (7)	-0.0067 (6)
C1	0.1063 (15)	0.0854 (13)	0.0788 (13)	-0.0308 (11)	0.0503 (11)	-0.0160 (10)
C2	0.0607 (9)	0.0627 (9)	0.0534 (9)	-0.0021 (7)	0.0313 (7)	-0.0068 (7)
C3	0.0744 (10)	0.0738 (10)	0.0502 (9)	0.0001 (9)	0.0335 (8)	-0.0025 (8)
C4	0.0812 (11)	0.0691 (10)	0.0588 (10)	-0.0043 (9)	0.0430 (9)	0.0049 (8)
C5	0.0587 (9)	0.0546 (9)	0.0566 (9)	0.0013 (7)	0.0345 (7)	0.0025 (7)
C6	0.0630 (9)	0.0544 (9)	0.0658 (10)	-0.0025 (7)	0.0379 (8)	-0.0015 (7)
C7	0.0614 (9)	0.0544 (9)	0.0602 (10)	-0.0044 (7)	0.0337 (8)	-0.0019 (7)
C8	0.0624 (9)	0.0513 (9)	0.0649 (10)	-0.0011 (7)	0.0341 (8)	-0.0021 (7)
C9	0.0567 (9)	0.0517 (8)	0.0568 (9)	0.0029 (7)	0.0280 (7)	-0.0030(7)
C10	0.0672 (10)	0.0725 (11)	0.0608 (11)	-0.0082 (8)	0.0302 (8)	-0.0020 (8)
C11	0.0758 (12)	0.0849 (12)	0.0676 (12)	-0.0017 (10)	0.0374 (10)	0.0088 (9)
C12	0.0721 (11)	0.0747 (11)	0.0597 (11)	0.0223 (9)	0.0315 (9)	0.0060 (8)

supplementary materials

C13	0.0872 (13)	0.0762 (12)	0.0610 (11)	-0.0049 (10)	0.0273 (10)	-0.0138 (9)	
C14	0.0856 (12)	0.0631 (10)	0.0683 (12)	-0.0131 (9)	0.0378 (10)	-0.0096 (8)	
C15	0.1016 (14)	0.1128 (16)	0.0632 (12)	0.0270 (12)	0.0398 (11)	0.0108 (10)	
Geometric parat	meters (Å, °)						
O1—C2		1.3689 (17)	C7—I	17A	0.92	300	
O1—C5		1.3800 (16)	C8—0	C9	1.492 (2)		
O2—C8		1.2218 (17)	С9—С	210	1.379 (2)		
C1—C2		1.477 (2)	С9—С	214	1.38	34 (2)	
C1—H1A		0.9600	C10—	-C11	1.3	72 (2)	
C1—H1B		0.9600	C10—	-H10A	0.93	300	
C1—H1C		0.9600	C11—	-C12	1.3	1.374 (2)	
С2—С3		1.333 (2)	C11—	-H11A	0.9.	300	
C3—C4		1.409 (2)	C12—	-C13	1.3	74 (2)	
С3—НЗА		0.9300	C12—	-C15	1.50	03 (2)	
C4—C5		1.347 (2)	C13—	-C14	1.3	74 (2)	
C4—H4A		0.9300	C13—	-H13A	0.92	300	
C5—C6		1.416 (2)	C14—	-H14A	0.93	300	
С6—С7		1.330 (2)	C15—	-H15A	0.90	500	
С6—Н6А		0.9300	C15—	-H15B	0.9600		
С7—С8		1.464 (2)	C15—	-H15C	0.90	500	
C2—O1—C5		106.82 (11)	02—0	C8—C9	119	.91 (14)	
C2—C1—H1A		109.5	С7—С	С8—С9	119	.74 (14)	
C2—C1—H1B		109.5	C10—	-C9—C14	117	.28 (15)	
H1A—C1—H1B		109.5	C10—	-C9—C8	124	.02 (14)	
C2—C1—H1C		109.5	C14—	-C9—C8	118	.69 (15)	
H1A—C1—H1C		109.5	C11—	-C10C9	121	.08 (16)	
H1B—C1—H1C		109.5	C11—	-C10—H10A	119.5		
C3—C2—O1		109.70 (14)	С9—0	C10—H10A	119	.5	
C3—C2—C1		134.46 (16)	C10—	-C11—C12	121.87 (17)		
O1—C2—C1		115.83 (13)	C10—	-C11—H11A	119	.1	
C2—C3—C4		107.42 (15)	C12—	-C11—H11A	119	.1	
С2—С3—НЗА		126.3	C11—	-C12—C13	117	.08 (17)	
С4—С3—НЗА		126.3	C11—	-C12C15	121.90 (18)		
C5—C4—C3		107.23 (14)	C13—	-C12—C15	121.02 (18)		
C5—C4—H4A		126.4	C12 - C13 - C14		121 72 (17)		
C3—C4—H4A		126.4	C12—	-C13—H13A	119.1		
C4—C5—O1		108.82 (13)	C14_C13_H13A		119 1		
C4—C5—C6		133.33 (14)	C13_C14_C9		120 96 (17)		
01		117.85 (13)	C13—C14—C9		119	.5	
C7—C6—C5		127.68 (15)	C9—(C14—H14A	119.5		
С7—С6—Н6А		116.2	C12—	-C15—H15A	109	.5	
С5—С6—Н6А		116.2	C12—	-C15—H15B	109	.5	
C6—C7—C8		121.64 (14)	H15A		109	.5	
С6—С7—Н7А		119.2	C12—	-C15—H15C	109	.5	
С8—С7—Н7А		119.2	H15A		109	5	
O2—C8—C7		120.35 (15)	H15B		109	.5	
					10)		

